NASA-CR-192747 P
T[CHME. r ""‘"ﬂ'{s
i‘i bnh b abuen U’I‘
NP

(NASA-CR-192747) SPHERICAL-URJECT NG3-T1643

REPRESENTATIUN AND FAST OISTANCE s ey

COMPUTATION FOR RNBOTIC ST

APPLICATIONS (Rensselaer unclas i)

Polytechnic Inst.) 16 p /"_ //Lﬂ
/

Z9/61 0153775

__(L_ N

Center for Intelligent

Robotic Systems
for Space Exploration

Rensselaer Polytechnic Institute
Troy, New York 12180-3590

Technical Revorfs A
Engineer:ne :p» "¥eieal Scienceg LfoEii'

Univers :; ¢, o
College Fark, L.alyiand 20742



SPHERICAL-OBJECT REPRESENTATION
AND FAST DISTANCE COMPUTATION
FOR ROBOTIC APPLICATIONS

by

Josep Tomero

Rensselaer Polytechnic Institute
Electrical, Computer, and Systems Engineering
Troy, New York 12180-3590

September, 1990

CIRSSE REPORT #64



SPHERICAL-OBJECT REPRESENTATION AND FAST DISTANCE
COMPUTATION FOR ROBOTIC APPLICATIONS

Josep Tornero!

Departamento de Ingenierias de Sistemas,
Computadores y Automdtica (DISCA)
Universidad Politécnica de Valencia, P.O.B. 22012
E-46071 Valencia. SPAIN.

Gregory J. Hamlin and Robert B. Kelley

Center for Intelligent Robotics Systems
for Space Exploration (CIRSSE)
Rensselaer Polytechnic Institute, 8015 CII
Troy, NY 12180, USA.

Abstract

A three-dimensional object representation technique for generating spherical-geometries and a fast
procedure for computing distances using this geometry is presented. An object is approzimated by an
infinite number of spheres. The shortest distance between two objects is obtained by finding the two
spheres, one from each object, that are closest. Ezceptional numerical results have been obtained, for
ezample, the mazimum time for computing self-collision for a standard PUMA robot-arm is equal
to 2.30 milliseconds with an error in distance of less than 1cm. This makes the new technique an
invaluable tool for computing distances and therefore permits collision-detection in real-time. This
technique has been applied to a complez robotic system consisting of two PUMA robots, each mounted
on a three-degree of freedom platform used at the CIRSSE to study robotic assembly of structures in
space.

Introduction

The fast computation of distances is an important part of many robotic applications. Distances
between the elements of a robot manipulator, between elements of cooperating robot arms and
between the robotic elements and objects in the environment may all need to be computed to
guarantee collision free payload transportation and manipulation. Fast distance computation
is an asset to trajectory planning and manipulation planning and is essential for the on-time
implementation of collision detection and obstacle avoidance strategies. In the context of
vehicular navigation in both 2-D and 3-D environments, fast distance computations are also
important. Potential fields and other similar functions find use in trajectory planning and can
similarly benefit from fast distance computation. Although all of these applications are not
explicitly addressed in this paper, it is clear that the approach presented here is appropriate
whenever distance computations have to be fast.

! Professor Tornero is Associate Professor at the Universidad Politécnica de Valencia (Spain) and at present
Visiting Researcher at CIRSSE



This paper presents a modeling technique which is conceptually between the bubble model
of O'Rourke and Badler (1] and the generalized cylinders of Agin [2]. The model is derived from
the basic idea that an object can be approximated by an infinite number of spheres. Hence
it retains the advantages of the bubble model and avoids the complexity of the generalized
cylinder. Using spheres, the shortest distance between two objects can be obtained by finding
the two spheres, one from each object, that are closest. Given these spheres, the computation
of the shortest distance is trivial. Further, the intrinsic symmetry of the spheres eliminates the
need to consider orientation.

Before presenting the sphere-based object representation technique and the associated fast
distance computational procedure, a brief discussion of the problem and the work of others is
given.

Path planning is based on having a good description of the world with its constraints as
well as a clear description of the required motion. A popular method of planning gross motions
has been to create a configuration space (C-space) model [3, 4]. For a moving point, the
configuration space obstacles are easy to compute. The VGraph algorithm has been applied
successfully in 2-D and with cartesian manipulators [5]. A recursive version of the VGraph
algorithm has been developed to be used in 3-D [6, 7]. The extension of this technique to
articulated manipulators has been found to be very computationally expensive.

Several attempts have been made to describe the space free of obstacles (free-space) rather
than the space of obstacles. Along this line, an eatly idea given by Brooks (8] was to define
conical volumes between objects. Later on Lozano-Perez and Brooks [9] presented the idea of
obstacles included in rectangular cell which were subdivided recursively into smaller ones. This
technique requires a great amount of computation for robot arms.

Some authors use spatial occupancy enumeration to model the freespace, and then determine
a collision free path using explicit spatial planning. Octrees, a special form of spatial occupancy
enumeration employs a successive subdivision of space into octants. Cells with different sizes
have been used to reduce the number of collision-detection computations [10]. Faverjon [11]
describes an algorithm for transforming cartesian obstacles into obstacles in the space of the first
three joints of a manipulator. This is based on a hierarchical structure. The major difficulty in
any of these schemes, in addition to the price of initial computation, is the large computational
effort required to modify the configuration space or octree representation when objects move
and especially when they change orientation.

Since many elements of robotic systems are bounded by plane surfaces, polyhedra have
been used to develop procedures for computing distances [12]. However, the large number of
comparisons required for such elements is highly time consuming. Thus, some authors have
recast the problem into a standard linear programming form. Sometimes, norm 1 and norm oo
rather than Euclidean distances are used to save computational effort {13]. Objects of revolution
have been used to obtain faster algorithms. However, this objects have the disadvantage of
combining curvilinear side surfaces with plane end surfaces. Replacing the end planes with
hemispheres is one way to speed up the algorithm [14].

Several optimal-control techniques are based on a good description of distances between
objects. The problems are defined analytically: however, such problems are generally solved
numerically (15] and therefore distances can be computed at each step. Distances are also
required in order to create artificial potential fields. Repulsive forces are obtained as functions
of the distances to the other objects (16]. Some papers are interested in collision between mobile

(V]



objects [17, 18, 19]; however, the algorithms available for static objects do not work efficiently
with moving objects.

The thrust of this paper is to first describe an object representation technique based on
spherical-volumes and second to develop a fast procedure for computing distances between
these volumes. The good numerical results obtained validate thoroughly the theory as well
as makes this technique a valuable tool for distance computation and collision detection in
real-time. An existing robot system has been used to show how this technique may be used for
complex systems.

Object Representation

The modeling technique is based on the idea that any real ob ject can be approximated by
an infinite number of spheres. For a particular object many different sets of spheres can be
generated, depending of the degree of accuracy required. In general accuracy is directly related
to the complexity of the process for obtaining the set of spheres. Later on, we will introduce
the idea of degree-of-freedom as a first measurement of this complexity.

The way of generating a set of spheres for a given object is provided by introducing the
concept of dynamic-spheres. A dynamic-sphere is defined as a sphere whose center P(x,y,z)
can move in a three-dimensional space and whose radius is a function of the position at each
moment R(x,y,z).

The object model corresponds to the volume swept by the dynamic-sphere when moving in
a bounded subspace. The subspace can be defined by

1. A set of inequality constraints,e.g., zo < z < ry.
2. A set of functional constraints in the form f;(x,y,2) = 0.

The number of functional constraints will determine the degrees of freedom for the center
of the dynamic-sphere. For example, a two-degree of freedom geometry is obtained when one
functional constraint is introduced. In parametric representation, that is

fl(xayv:) =0

P =P(M,A), R=R(,A) (1)

The complexity of the volume swept by the dynamic-sphere depends on the functions P(J;)
and R();), as well as the range of the \'s. To make the problem as standard as possible, A;
will be fixed, A; € [0,1], Vi.

The simplest class of objects for the one-degree of freedom geometry is obtained by consid-
ering linear functions of the form,

P=P0+:\P1 2
R= R, +\R, (2)

We define a spherical-cone as the volume swept by a dynamic-sphere whose center and
radius obey linear functions in the parameter A as shown in equations 2. Particular cases of

this geometry for A varying within a given range. such as spherical-cylinders, etc., can be seen
in Figure 1.



Figure 1: Spherical-cones

For a spherical-cone i, Equations 2 can be rewritten in terms of the radius and center of the
end-spheres at the two extremes of the volume, (Pio, Rjo) and (Pj3, Ri3), in the following way,

Pi=Po+ A (Py — Py) 3)
Ri = Rio+ A (Ra — Ry)
X €10,1]
The degree and the angle of convergence of a spherical-cone can be defined respectively by
 (Ru-Ri)

e - T Qg‘=a~rC3in.' 4
=Py = Po] m )

For values of degree of convergence equal or greater than 1, (7; > 1), the volumes degenerate
into a simple sphere equal to the largest end-sphere.

For the two-degree of freedom case, the simplest geometry which can be represented is a
dynamic-sphere moving tangentially between two planes, which is called as a spherical-plane.
In a similar way as a spherical-cone is bounded by two end-spheres, a spherical-plane is bounded
by four end-spherical-cones which constitute the sides of the plane. A volume i of this kind
can be described by two spherical-cones with a common end-sphere, [(Pjq, Rig), (Pj1, Rj;)] and

[(Pio, Rig), (Piz2, Ri2)], which constitute two continuous sides. The volume is then generated
from a dynamic-sphere which follows the following equations

{ P; = Pg+ X1 (Py ~ Pig) + Ag(Pg ~ Pp) (5)
Ri = Rio + Xa(Riy — Rip) + Aia( Rz — Rio)
Aa&Ai; € [0.1]

According to Equations 5, the center of the dynamic-sphere moves inside a parallelogram,
which can be easily cut-off by lines, defined as inequality constraints, in the form of linear
combination of parameters \’s, :

ay A +az-\ <1 (6)

A more general, but still simple, two degree of freedom structure can be obtained from two
opposite end-spherical-cones of the plane, [(Pio. Rig), (Pi1, Rj1)] and ((Piz2, Ri2), (Pia, Ria)].
In this case, the geometrical locus of the center of the dynamic-sphere is not forced to be a

4



Figure 2: Spherical-planes

parallelogram. However, several relations between the two spherical-cones must be stated in
order belong to the same spherical-plane.

Several kinds of spherical-planes can be obtained with this two-degree of freedom geometry
as depicted in figure 2. Spherical planes are bounded at least by three spherical-edges which
are in the class of spherical-cones or one-degree of freedom geometries. These spherical-edges
intersect in spherical-vertices which corresponds to the zero-degree of freedom geometries.

Dynamic-spheres with three degrees of freedom are not considered in this paper, given
that the most outstanding advantage of this object representation technique comes from the
possibility of generating three-dimensional models with less than three degrees of freedom.
However, the basic idea can be easily extended to dynamic-spheres moving in three or even
more degrees of freedom. Extra degrees of freedomn can be introduced in order to increase the

accuracy of the representation or to consider aspects such as the time-factor for describing
movements of objects in the space.

Procedure for Fast Distance Computation

The problem of finding the shortest distance between two bodies whose volumes have been gen-
erated by the movement of two dynamic-spheres. (£, ;) and (P;, R;), along their trajectories
can be stated as a Min-Max problem as follows,

min{f{] A(X) = B(\) | =Ri(X) = B(\) 1 (7)

where f{z} =zifz>0
= 0 otherwise

The problem can be expressed in terms of finding two spheres, each belonging to a distinct
geometric structure, with the shortest distance between them.

Distance Between Volumes Generated from Dynamic Spheres with
One-degree of Freedom

The kind of functions selected in the definition of the movement of centers P;(A;) and evolution
of the radius Ri(Ai) affects directly the complexitv of the Min-Max problem. Even for the



Figure 3: Distance between two spherical-cones

simplest objects generated from spheres with one degree of freedom and linear functions the
use of Euclidean distances means that, the set of resulting equations involve square roots.

The set of non-linear equations for computing the distance between two spherical-cones as
shown in Figure 3 can be simplified resulting in two sets of vector equations which solve the
problem in two steps.

1. Compute the direction of the shortest distance.

ﬁa‘(Pil-Pio) =R-|'1—Ri0 (8)
iy - (P — Pjo) = ~(Rj1 — Rjo)

where the unknown i, is the unitary vector in the direction of the shortest distance
between volumes and which is perpendicular to both surfaces.

2. Compute the spheres involved.

P.‘o+/\,'-(P“ --P;o) = PJ0+AJ'-(PJ‘1 —Pjo)+d-ﬁ, (9)

where ); and ); are the parameter values which define the spheres involved
d is the distance between the centers of these spheres

The distance is obtained as follows.

Distance = d — Ri(\;) — R;();) (10)
The unitary vector 7i, perpendicular to the surfaces can be computed by using a pseudo-
polar coordinate system representation, as shown in [igure 4, and is based on the three following
vectors,
5. = P = Po)
" Pu= Pyl
- _ (Pa = Py)
5 = i1 = Fe) 11
TR = Pol )

6



Figure 4: Pseudo-Polar Coordinate System

Ne =1v; X 'UJ'

Any point in space, or any vector centered at the coordinate origin can be described in
terms of a linear combination of these three unitary vectors. Thus

ﬁs:ﬂw'&"‘gv,"{"j'i'gnc'ﬁc (12)
where g,, = p-cos 8 . &
gvj=P‘C°30°—

gn, =p-sind

a = arccos(7; - ¥;)

For the coordinate system introduced and using the degrees of convergence, the inner-
products in Equations 8 can be rewritten as

Gu; T Gu; - COsa =1

13
Gu; - COSQa + Jo, = =15 ( )
By solving these equations, we get
ta_n¢=nj_+w, coxd = 1 , p=1 (14)
7;-sina cos ¢

In the special case of two cylinders, the value of vector 7y is obtained directly as 7, = 7,.

When the vector i, has been computed, the values of the parameters A’s can be obtained
by solving the set of scalar linear equations or directly from the vector equation 9. Multiply
this equation by Tiy; = fly X T; and Ry, = iy X 5 respectively, to obtain ); and Aj.

= (PjO-HO)'ﬁ:,‘
"7 (Pa - Po)- A,

__(PJ'O - PIO) : ﬁ,..

A=
T (P = Po) - Ay,




When at least one of the \'s is out of range (e.g.A; € [0,1]), the distance between the
corresponding end-sphere (P = P;(0) or P = P;(1)) and the other volume is computed. The
problem is identical to computing the shortest distance between a sphere and a spherical-cone.

This problem is solved in two steps,

1. Compute the point in the axis nearest to the center of the sphere.

L _ (B = Pi) - (P — Ppo) 16
A= | Piv = Py |2 (19)

2. Update the value of );, to obey the angular condition represented by Equation 8.

| B = BOH |

.= )+
A=Ay | Pih— Pjo |

ana; (17)

where a; = arcsin 7;

Distance Between Volumes Generated from Dynamic Spheres with
Two-degrees of Freedom

Distances between spherical-planes (two-degree of freedom) will involve determining the dis-
tances between spherical-vertices and spherical-planes as well as between spherical-edges. All
possibilities are included by these two types of comparisons.

Spherical-edges are one-degree of freedom geometries, so they have been considered previ-
ously. However, given that an exhaustive distance computation between all the spherical-edges
will be considered highly inefficient, several rules will have to be considered to reduce the
number of elements potentially involved and therefore the number of comparisons.

The distance between a spherical-vertex or sunply a sphere and a spherical-plane is com-
puted by a process similar to the one for computing the distance between a point and a plane.
That is, first by projecting the point onto the plane and then by measuring the distance between
the point and the projected-point.

In our case, a sphere projected onto a spherical-plane produces a “projected-sphere” inside
the spherical-plane in such a way that the distance between the two volumes is obtained by
measuring the distance between these two spheres. :

The process for computing the distance between spherical-vertices of volume i and the
spherical-plane j is solved in two stages.

1. Compute the perpendicular to the surface of spherical-plane j.
The unitary vector perpendicular to the surface, 1;,, must obey the following equations
szs : L:"jn =15 (18)
Mjs Uj2 = Nj2
where
o R~ Rjo) (Rj2 = Rj)

- . i = e T 19
nit | Py =P | | Py — Pjo | (19)

72



s = Pn—PFo) - _ (Pn—Po) 20
NETPa-Pol' T Pua- Pyl )

A pseudo-spherical coordinates system based on vectors ¥j;, ¥j2 and ®;. = Tj; X U3 is
introduced to compute the vector ii;,, according to the Equation 12. In this case the
values of the basic variables are

N1

08 ¢J"

Nj2 — M1 "3030)

; = arctan -
¢ ( ;1 - sina

8; = arccos p=1 (21)

where a = arccos(%;; - T;3)

. Project each spherical-vertex of volume i onto volume j and compute the distances:

(a) Each spherical-vertex of volume i, {(P,,,. Ry, ), k = 1,K , K > 3}, is associated with
a projected-sphere in the volume j, (P,.,,. Rpy;, ). The center of the projected sphere
is computed as follows

Powio = Py, + dise - o (22)
where the distance between centers is computed by
(Pio — Pu,) - Aije

cos 3;

COSﬁJ‘ = ﬁjc 'ﬁj.

dix =

(23)

When the center, P,,,,, has been computel the radius, R,.,,,, and the parameters s
for the projected-sphere need to be obtained. To compute A;; and Aj2, multiply the
first Equation 5 by 7i;,, = ;. x #j; and 7., = fije X U;; respectively, to give

Aj = (Ppt'ak_PJ' )'ﬁja
T Py - Po) - flj

2o = Povis = Pio) - ey
72

= — 24
(Pj2 = Pjo) - fije, (24)

(b) The distance between the spherical-vertex and the spherical-plane, supposed it un-

bounded, is given by

Dk = die — Ri( Ay Mi2)vie — Ri(Aj1, Aj2)pues, VNS ER (25)

If the spherical-vertex corresponding to the minimum distance, (D} = ming{Dy}), gener-

ates a projected-sphere inside the spherical-plane. (\'s € [0, 1]), then this minimum distance is
actually the distance between the two objects. Otherwise, the values of the \’s of the projected-
sphere for all the spherical-vertex will determine up to four spherical-edge to spherical-edge
distance computations.

9



Numerical Results and Example

A set of algorithms has been implemented in order to verify the theory and to determine the
simplicity and efficiency of the technique presented in this paper. The spherical-geometries
generated from dynamic-spheres have been used to represent various robotic systems and their
environments.

The distance computation algorithms have been tested on a standard SUN SPARCstation
1, a RISC-based workstation, using sets of one hundred randomly generated and positioned
volumes. The minimum, maximum, and average times in milliseconds for computing distance
between all the combinations of objects developed in the theory have been recorded in the
following table.

Objects Compared Minimum [ Maximum Average
Time (ms) | Time (ms) | Time (ms)
sphere to sphere 0.05 0.05 0.05
sphere to spherical-cylinder 0.14 0.14 0.14
sphere to spherical-cone 0.25 0.26 0.26
sphere to spherical-plane 0.65 0.91 0.87
spherical-cylinder to spherical-cylinder 0.20 0.23 0.23
spherical-cylinder to spherical-cone and 0.65 1.57 1.05
spherical-cone to spherical-cone
spherical-cylinder to spherical-planex and 0.72 3.86 2.82
spherical-cone to spherical-plane*
spherical-planex to spherical-plane= 2.81 9.09 7.01

(*) For these computations, planes with 4 vertices have been considered

A robotic testbed platform. used at the CIRSSE to study robotic assembly of structures in
space, has been modeled in order to thoroughly test the entire theory. The setup consists of
a PUMA 560 and a PUMA 600 each mounted ou a three-degree of freedom platform. Each
platform can be independently translated along a common track and has two rotational degrees
of freedom, rotation about a vertical axis and tilt about a horizontal axis.

A kinematic model based on homogeneous transformation matrices using a modified form
of the Denavitt-Hartenberg parameters [20] is used in order to determine the position of the
robot links.

Each link of the robotic system has at least one associated volume as can be seen in Figure 5.
In particular each individual PUMA robot-arm is modeled by the following spherical-volumes:
A sphere and a spherical-cylinder for Link 0, a spherical-cylinder for Link 1, spherical-planes
for links 2 and 3, this latter one including the wrist, and a sphere as an approximation to the
gripper. A more precise representation of the latter objects could be constructed using several
smaller volumes. An infinite plane is used to define the floor. The description of each volume in
terms of its end-spheres with respect to its coordinate frame appears in the following table. The
spherical-plane representing Link 2 has been clipped by two relations in the form of Equation 6
whose parameters do not appear in the table.

10



Name | Type | Coordinate Frame | X(mm) Y(mm) [ Z(mm) | R(mm)

Link 0 | Sphere PO 0 604 0 305

cylinder PO 0 0 0 83

0 0 597 83

[Link 1 | Cylinder | P1 0 -108 0 83
0 152 0 83

[ Link 2] Plane | P2 -146 -149 0 51
-146 149 0 51

470 149 0 51

LLink 3| Plane [ P3 86 76 0 43
-36 76 0 43

-86 -356 0 43

[ Wrist | Cylinder | P4 0 0 0 61
0 0 -38 61

[ Hand | Sphere | "Pla 0 -62 0 43

When considering self-collision for the PUMA rohot arm, the set of volumes described above
can be simplified to give even a better approximation. In terms of distance computation, links 2
and 3 are represented better by a combination of spherical-cones and spherical cylinders. This
is due to the fact that certain links can never collide and in addition, certain surfaces will never
be involved in the computation of shortest distances between elements in the same robot-arm.
The following table shows the pairs of elements which need to be checked for self-collision.

Link 0
sph-cylinder

Linkl
sph-cylinder

Link 2
sph-cylinder | sph-cone

sphere

Link 3 and wrist

spherical-cone X - X - .
gripper
sphere X X X X -

As can be seen in the table, only six distances need to be computed: one sphere to sphere,
three sphere to spherical-cylinder, one sphere to spherical-cone, and one spherical-cylinder to
spherical-cone. Taking values from the table of computation times, the minimum, maximum,
and average times in milliseconds are 1.37, 2.30, an« 1.78 respectively. The maximum error in
distances with respect to the exact shape of links 0 to 3 plus the sphere at the end is less than
one centimeter. Collisions with the floor are determined immediately from the z-coordinates of
the sphere bounding the gripper and one end-sphere of the spherical-cone for Link3.

For the overall robotic system, using the volumes shown in Figure 5, the number of com-
parisons required are 1 sphere to sphere. 14 sphere to sphere-cylinder, 11 sphere to spherical-
plane, 20 spherical-cylinder to spherical-cylinder, 25 spherical-cylinder to spherical-plane and
12 spherical-plane to spherical-plane. This gives wninimum, maximum and average times in
milliseconds of 66, 220 and 170 respectively.

When restricting the volumes to zero or one degree of freedom, using spherical-cones for
links 2 and 3 plus wrists. as well as replacing plaiforms with hemispheres, the computation
time is reduced significantly. In this case the numiber of comparisons are as follows, 6 sphere to

11



Figure 5: Robotic-system: Cooperative robot-arms

sphere, 14 sphere to sphere-cylinder, 14 sphere to sphere-cone, 10 spherical-cylinder to spherical-
cylinder, 15 spherical-cylinder to spherical-cone and 4 spherical-cone to spherical-cone. This
gives minimum, maximum and average times in milliseconds of 20, 38 and 28 respectively.
Details of these numerical results are presented and discussed in a CIRSSE report(21].

Conclusions

A new three-dimensional object representation tech nique for generating spherical-volumes has
been presented based on the idea that any real object can be approximated by an infinite
number of spheres. These spheres are easily described by introducing the concept of dynamic-
spheres. Although only linear functions have been used for describing the dynamic-spheres,
the set of volumes generated is quite extensive and has been proved to be enough to model a
robotic system with reasonable accuracy. The concept is easily extended to include other kinds
of functions.

A very fast procedure for computing distances hetween spherical-volumes has been devel-
oped with good numerical results. The procedure has been shown to be simple and efficient
when dealing with robotic systems.

Futher work will focus on using other kinds of functions for the dynamic-spheres, with the
intent of: -increasing the variety of volumes generated, e.g., in two-degree of freedom a dynamic-
sphere could follow general surfaces in order to give a better approximation of complex objects;
-considering basic movements such as spheres rotaling around an axis to describe the movement
of a robot-arm in terms of the volumes swept by its links.

12



Acknowledgement

Josep Tornero gratefully acknowledges the support of this research through a grant from the
Spanish Government (MEC-DGICYT). Gregory J. Hamlin and Robert B. Kelley appreciate
the support in part by Grant NAGW-1333 from NASA to the Center for Intelligent Robotic
Systems for Space Exploration.

References

(1) J. O’Rouke and N.I.Badler, “Decomposition of three-dimensional objects into spheres,”
IEEE Trans. PAMI, vol. 1, July 1979.

(2] B. Agin, Representation and Description of Curved Objects. PhD thesis, AIM-173, Stanford
Al Laboratory, October 1972.

[3] S. Udupa, “Collision detection and avoidance in computer controlled manipulators,” in
Proc. 5th Int. Conf. on Artificial Intelligence. (MIT, Cambridge, Massachusetts), pp. 737~
748, August 1977.

[4] T. Lozano-Perez and M. Wesley, “An algorithm for planning collision-free paths among
polyhedral obstacles,” Commun. ACM, vol. 22. pp- 560-570, October 1979.

[5] T. Lozano-Perez, “Automatic pla.ﬁning of manipulator transfer movements,” IEEE Trans.
Systems Man and Cybernetics, vol. SMC-11, pp. 681-698, October 1981.

[6] C. Chung and G. Saridis, “Path planning for an intelligent robot by the extended vgraph
algorithm,” in IEEE International Symposium on Intelligent Control, (Albany, New York),
September 1989.

[7] C. Chung and G. Saridis, “The recursive conmpensation algorithm for avoidance path plan-
ning,” in [EEE Intrernational Workshops ou Intelligent Robots and Systems, (Tsukuba,
Japan), September 1989.

(8] R. Brooks, “Solving the find-path problem by good representation of free space.” IEEE
Trans. on Systems, Man and Cybernetics, vol. SMC-13, pp. 190-197, March/April 1983.

[9] R. Brooks and T. Lozano-Perez, “A subdivision algorithm in configuration space for find-
path with rotation,” JEEE Trans. on Systems. Man and Cybernetics, vol. SMC-15, pp. 224~
233, March/April 1985.

(10] V. Hayward, “Fast collision detection scheme by recursive decomposition of a manipulator
workspace,” in [EEE [nt. Conf. on Robotics und Automation, (San Francisco, California),
pPp. 1044-1049, April 1986.

(11] B. Faverjon, “Object level programming of industrial robots,” in IEEE Int. Conf. on
Robotics and Automation, (San Francisco, California), pp. 1406-1412, 1986.

[12] E. Gilbert, D. Johnson, and S. Keerthi, “A [last procedure for computing the distance
between complex objects in three-dimensional space,” [EEE Journal of Robotics and Au-
tomation, vol. 4, no. 2, pp. 193-203. April 193x.

[13] J. Whitehead and K. Kyriakopoulos, “Efficient implementation of linear and quadratic
programming algorithms for minimum distance estimation between solids,” Tech. Rep.

13



CIRSSE-TR-89-22, Center for Intelligent Robotics Systems for Space Exploration, Rens-
selaer Polytechnic Institute, Troy, New York. 12180-3590, 1989.

(14] A. Sciomachen and P. Magnani, “A collision avoidance system for a space manipulator
arm,” in Proceedings of the NASA Conference on Space Telerobotics, vol. 5, pp. 283-291,
1989.

(15] D. Johnson and E. Gilbert, “Minimum time robot planning in the presence of obstacles,”
in Proc. IEEE Conference on Decision and Control, pp. 1748-1753, 1985.

(16] O. Khatib, “Real-time obstacle avoidanve for nanipulators and mobile robots,” The Int.
Journal of Robotics Research, vol. 5, pp. 90-98. Spring 1986.

(17] M. Erdmann and T. Lozano-Perez, “On multiple moving objects,” in JEEE Int. Conf. on
Robotics and Automation, (San Francisco, California), pp. 1419-1424, February 1986.

(18] J. Canny, “Collision detection for moving polyhedra,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. PAMI-$, no. 2, pp. 200-209, 1986.

(19] E. Gilbert, “A new algorithm for detecting the collision of moving objects,” in IEEE Int.
Conf. on Robotics and Automation, pp. 8-14. 1989.

[20] J. Craig, Introduction to Robotics. Mechanics and Control. Addison-Wesley Publishing
Company, 1986.

[21] J. Tornero, G. Hamlin, and R. Kelley, “Efficient distance functions using sphererical-
objects and their application to the two-puma platform system,” Tech. Rep. CIRSSE-TR-
90-64, Center for Intelligent Robotics Systems for Space Exploration, Rensselaer Polytech-
nic Institute, Troy, New York, 12180-3590, 1990.

L4



